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Effects of Nonlinear Micromagnetic Coupling on a
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We present a general harmonic formulation that takes into account, explicitly, the effects of micromagnetics for modeling the magnetic
fields in a magnetoimpedance (MI) sensor element. We first relax assumptions commonly made to derive closed form solutions from a
decoupled set of linear equations. We then solve numerically (using a meshless method formulated in point-collocation) the Maxwell and
the Landau–Lifshitz–Gilbert equations simultaneously for the real and imaginary parts of the magnetic fields and magnetization in the
context of a cylindrical amorphous MI sensor element. Comparing our results of the effects of coupling the equations of motion against
published experimental data, we found striking differences both quantitatively and qualitatively between the coupled nonlinear and
decoupled linear models. The coupled nonlinear harmonic formulation presented here results in improved accuracy and more consistent
qualitative behavior in accordance to reported experimental observations, particularly in the weak field regime. Also presented here
are spin wave amplitude distributions showing spatial dispersion within MI elements structures, which represents information lost in
decoupled formulations.

Index Terms—Magnetization, magnetoimpedance, meshless methods, MI sensor, micromagnetic.

I. INTRODUCTION

HIGHLY sensitive sensors capable of detecting very weak
magnetic fields have a spectrum of applications ranging

from small memory devices to biomedical applications. Among
these are sensors based on the magnetoimpedance (MI) effect
which is a sensitive realignment of a periodic magnetization in
response to an external magnetic field. Devices like MI-effect
sensors that have experimentally demonstrated an absolute res-
olution on the order of 10 Tesla (T) or better [1] offer the po-
tential of high sensitivity at low cost. The complex behavior of
MI effects ultimately suggests the design of high-sensitivity MI
sensors requires a good understanding of both electrodynamics
and micromagnetic effects on the magneto impedance.

Interest in MI has generated a flurry of research since the dis-
covery of very large MI (GMI) effects in amorphous ferromag-
netic wires [2]–[4] and thin films [5] with small magnetic fields
at relatively low frequencies in the early 1990s. More recently,
MI effects have been studied in multilayer films and compos-
ites [6], [7]. More than 100 promising applications of GMI have
been suggested in [8]. Despite its potential, MI sensor designs
have relied heavily on experimental techniques. Early experi-
mental results have been described qualitatively by way of the
impedance model derived by Landau and Lifshitz [9] for mag-
netic wires, which has revealed a dependence on a relation be-
tween the transverse magnetic permeability and measured ex-
ternal field. The manner of finding this relationship has been
the distinction between many previous models. One method
is based on the calculation of ac complex impedance with a
rigid domain structure in both wires and films [10], [11], and
for a flexible wall model [12]. Other methods for deriving a
lumped-parameter-based effective permeability were based on
an energy approach, for example, [13] and [14].
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The interest to extend MI sensors for detecting very weak
magnetic signals in biomedical applications, along with the
challenging requirements of greater speed and areal density
in magnetic storage elements, has considerably increased the
effort of researchers in the investigation of magnetization
dynamics. Many of the analyses are based on the dynamic
model proposed by Landau and Lifshitz in 1935, and succes-
sively modified by Gilbert in 1955. Guided by the solution to
a linearized harmonic form of the Landau–Lifshitz–Gilbert
(LLG) equation, a permeability model was presented in [15]
for the case of axial (and transverse) anisotropy in a cylindrical
element. The solutions [15], [16] provide a permeability tensor,
from which the effective transverse permeability scalar is
computed. The permeability so derived depends on the case
of assumed anisotropy direction. In [17], a similar model
for the case of transverse anisotropy in wires was presented.
Additional assumptions (such as small amplitudes in the ac
source) are commonly made in order to reduce the micro-
magnetic dynamics to a linear form. Most of these existing
approaches have essentially utilized the decoupled impedance
model (Landau–Lifshitz impedance for wires) derived from
the decoupled Maxwell equations along with a permeability
tensor (or effective scalar) for modeling the MI effect. While
the linearized LLG equation is more tractable, the lumped-pa-
rameter permeability which generally yields only first-order
accuracy is inadequate to characterize the MI effect in response
to very weak external fields. For this reason, we have developed
a general formulation (that relaxes key assumptions leading
to linearization) for characterizing the magnetic fields in MI
sensors.

The remainder of this paper offers the following.
1) We offer a general harmonic formulation (that takes into

account, explicitly, the effects of micromagnetics) for mod-
eling the magnetic fields in an MI sensor element. While
relaxing assumptions commonly made in the literature,
this coupled nonlinear model provides a means to explic-
itly solve the Maxwell and LLG equations simultaneously
for the real and imaginary parts of the magnetic field and
magnetization.
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2) We present a model deploying a meshless method (MLM)
formulation using point collocation [18] with the HP-cloud
shape functions [19] for solving the coupled nonlinear
model. We validate the numerical method (referred to here
as HP-PC MLM) by comparing results against those using
a Galerkin finite-element method (FEM), which shows
excellent agreement and an advantage of HP-PC MLM in
terms of computational time.

3) We investigate the effects of micromagnetic coupling on
the MI effect by comparing the coupled nonlinear model
computed using the HP-PC MLM against the decoupled
linear model, which has a closed form solution. The com-
puted impedance voltage, which has been based on a cir-
cular amorphous wire for the case of axial anisotropy, is
compared against published experimental data [20]. As
will be shown, unlike the decoupled linear model that is
invalid in the weak external field regime, the nonlinear cou-
pled model agrees very well qualitatively with the exper-
imental data. In addition, the analytical models discussed
offer an intuitive means to visualize the effect of micro-
magnetics particularly in the weak field regime.

II. EQUATIONS OF MOTION

The main characteristics of the MI effects in amorphous wires
and ribbons can be partly understood in the frame of classical
electrodynamics:

(1a,b)

where and are the magnetic flux density and field intensity,
respectively; is the magnetization; is the permeability of
free space; and is the bulk electrical conductivity.

The magnetization “motion” is governed by the Landau–Lif-
shitz and Gilbert equations originally proposed by Landau and
Lifshitz, and successively modified by Gilbert [16]:

(2)

where is the gyromagnetic ratio; is the phenomenological
Gilbert damping constant; and is the saturation magnetiza-
tion. In (2), is the total effective field vector:

(3)

where is the sum of the applied external fields; and
and are the effective fields taking into account the effects
of anisotropy, exchange, and demagnetization, respectively. The
effective anisotropy field (that is generally a function of
temperature) is given by [21]:

(4)

where ; and is the unit vector in the direction
of the material preferred anisotropy. The exchange field is
given by

(5)

where is the exchange stiffness. The demagnetization field
is characterized by the Poisson equation

and (6a,b)

Since , (2) can be
written as

(7)

where

(7a)

Skew (7b)

and is the identity matrix. Equations (1) and (7), equiva-
lent to the Maxwell–Landau–Lifshitz–Gilbert (MLLG) equa-
tions [22], are referred to here as the Maxwell skewed-LLG
(MsLLG) equations. The MsLLG equations are a coupled set
of nonlinear PDEs that describe the and fields within the
MI element.

Once the and fields are found, the inductive voltage
across the MI element is given by Faraday’s law of elec-

tromagnetic induction. For a stationary circuit in a time varying
magnetic field

where (8)

where is the magnetic flux crossing surface area.

A. Coupled Nonlinear Harmonic Formulation

For the problem of the MI element under a dc external field,
and are assumed to take the form

(9a)

(9b)

where and are phase angles with respect to the ac source.
The field is a dc field, representing that which is to be mea-
sured, while is given by the magnetization equilibrium state.
The components and are both ac components of their
respective vector fields, at frequency . Similarly

(10a)

(10b)

Substitution of (9a, b) and (10a, b) into (1), (7) and (6) leads
to the following partial differential equations (PDEs) given in
(11)–(13) in vector form:

(11a)

(11b)

(12a)
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(12b)

(13a)

(13b)

Equations (11)–(13), along with (3)–(5), are a coupled non-
linear model, which explicitly solves the Maxwell and LLG
equations simultaneously for the real and imaginary parts of the
magnetic field ( and ), magnetization ( and ), and
demagnetization field potential ( and ).

B. Decoupled Linear Formulation

A common approach to reduce the coupled nonlinear equa-
tions, (1) and (7), to a more tractable form is to decouple the
electromagnetic from the magnetization motion equations by
approximating , where is the magnetic suscepti-
bility tensor and hence

where (14a,b)

With (14), the Maxwell (1) no longer explicitly depends on ;
and the linear system can be solved for an impedance model in
terms of the permeability tensor , which can be derived inde-
pendently from the LLG equation as a function of the external
field.

A permeability model (in terms of the applied/external
magnetic field ) can be derived in closed form from the
linearized LLG equation for a quasi-static problem with an
axial anisotropy, which satisfies the following commonly made
assumptions.

1) The amplitude of the field is small compared to that of
the dc fields.

2) and are known a priori at the equilibrium state:

(15)

where is the dc component of .
3) Exchange and demagnetization effects can be neglected:

Under assumptions 1 and 2, the linearized LLG equation can
be obtained by removing all products of terms:

(16)

Substituting (9b) into (4), the anisotropy field is written as

(17)

The matrix, is given in (20). It follows from (9a) with
assumption 3 that

(18a)

(18b)

With 18(a, b), (16) can be solved analytically for the magnetic
susceptibility. The permeability tensor can be calculated
from (14b).

Permeability Tensor for the Case of Axial Anisotropy: For the
case of axial anisotropy, the equilibrium magnetization is given
by

(19)

and

(20)

Equations (19) and (20) imply . Upon
solving (16) for is given by (14b) as

(21)

where ; ;
and . The permeability tensor
takes the form [16]

(22)

where and depend on the external magnetic field. In SI
units,

and (23a,b)

where .
Impedance Model for a Cylindrical Magnetic Wire: Derived

from the Maxwell (1), the impedance was given by Landau and
Lifshitz [9] for a circular magnetic wire (Fig. 1)

(24)

and

(25)

where is the outer radius of the MI element, is the dc
resistance, and are Bessel functions of the first kind,
is the transverse magnetic permeability; and is the classical
skin depth. The impedance model (24) explicitly depends on
the lumped-parameter transverse permeability and the source
frequency . The circular component of relating the circular
component of to such components of is given by

(26)

Another expression for the lumped-parameter transverse perme-
ability used in [15], [23] is given by

(27)
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Fig. 1. Cylindrical MI element.

TABLE I
SIMULATION PARAMETERS

III. NUMERICAL SOLUTION OF COUPLED NONLINEAR MODEL

The full (coupled and nonlinear) model generally has 14 com-
ponent variables: and , where

denote the three spatial coordinates. The solutions
to the coupled nonlinear model are solved numerically using a
meshless method. The procedures for a numerical formulation
in point collocation (strong form) and weak form for solving a
boundary value problem using a MLM can be found in [18].

Boundary Conditions for a Cylindrical Magnetic Wire: To
determine a unique and relevant solution for the MI effect equa-
tions of motion, an appropriate set of boundary conditions (BCs)
must be specified. Without loss of generality, we consider, as an
illustration, a cylindrical amorphous wire shown in Fig. 1, where

(28)

Since and only vary radially, the radial components of
(11a, b) lead to

(29)

The remaining 12 coupled nonlinear component equations of
(11a, b), (12a, b), and (13a, b) are solved numerically along with
the following boundary conditions:

(30)

(31a,b)

(31c,d)

(31e)

(31f)

Equation (31e) assumes the free-spinning condition [24]. Note
that the field intensity at the interface can be ob-
tained by integrating Ampere’s law over the cross-sectional area
because of the current source, which leads to (31); thus, the
far-field condition is not needed.

Computation for Cylindrical Magnetic Wire: Numerical sim-
ulation has been performed on a circular amorphous wire (diam-
eter of 30 m and length of 5 mm) with an ac source of 15 mA at
1 MHz over the external field range 0 to 1000 A/m so that com-
puted results can be compared against published experimental
data [20]. The values for the parameters used in the numerical
investigation are summarized in Table I, where is computed
from the volume compositional average using published values
for cobalt and iron [25].

Fig. 2. Computed jV j versus H ;n = 55 nodes, and computation time T.
(a) jV j as a function of H . (b) Computation time, T.

Since all computations are performed on a desktop PC,
both strong form (or point collocation method) and weak
form formulations along with several basis functions were
preliminarily tested for computation efficiency leading to the
choice of MLM formulated using a point-collocation method
[18] with the HP-cloud shape functions [19] referred to here
as HP-PC MLM. Computed using a Newton solver with added
auto-damping to treat the variable stiffness, the HP-PC MLM
was implemented in MATLAB. In each of the computational
iterations, the norm of the approximate error is calculated as
a convergence metric; the computation was terminated when

.
A key interest in the MI sensor is its response to the external

field over the region from 0 to near saturation. The sensor
response is often measured in terms of the voltage magnitude
across the MI sensor, . Recall (1b) provides the magnetic
flux density in terms of and . The circular component of

determines the inductive voltage (8), while the total voltage
is given by

(32)

Fig. 2(a) graphs the magnitude of the voltage across the MI ele-
ment, , as a function of the external dc field . It is inter-
esting to note that the computational time to solve the coupled
nonlinear model follows the same trend as the MI voltage where
the stiffness is increased in the small field region, particularly
close the small valued anisotropy assumed to be approximately
0.8 A/m. To provide a means to validate the numerical com-
putation, the results (computed using the HP-PC MLM)
are compared with those using FEM (weak form formulation),
which show excellent agreement. However, the HP-PC MLM
needs significantly less time than the FEM for the same number
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of 55 nodes as compared in Fig. 2(b), where the computation
time is normalized to the largest respective time observed at

. For the at , the FEM took more than
8 h to compute 55 nodes (or 27 second-order elements) while
the HP-PC MLM computed the same result in less than 1 h.

IV. RESULTS AND DISCUSSION

The effects of coupling between the micromagnetics and
electrodynamics on the magnetoimpedance were investigated
numerically by comparing the solutions of the coupled non-
linear MsLLG equations against those approximated using the
Landau–Lifshitz impedance model (derived from the decou-
pled Maxwell equation) with the scalar effective permeability
computed from the linearized LLG. The study was based on the
same wire with values of the parameters summarized in Table I.

A. Results

The results (computed using the HP-PC MLM) are given in
Figs. 3—7:

A) is plotted as a function of the external dc field in
Fig. 3, and as a function of the source frequency in Fig. 4
where A/m. In Figs. 3 and 4, and refer
to the solutions of the decoupled linear model with
and given in (26) and (27), respectively. Computed
results are compared against experimental data published
in [20]; the wire was subjected to a low annealing tension
of 2 kg/mm .

B) Fig. 5 shows the circular components of both (repre-
sented as ) and (represented as ) for and

A/m computed from the coupled nonlinear model.
The distribution of obtained from (11), (12), and (1b)
has been computed using an equally distributed nodal set
of 55 nodes. With this information, the resulting distribu-
tions can be compared in the case of a weak field
and a near-saturation field A/m) so that the
assumptions commonly made in deriving the decoupled
models can be examined.

C) This physical image leads to a clearer understanding of
the qualitative differences between both models. To offer
intuitive insights into the very weak field regime, the fol-
lowing results are computed at .
1) Fig. 6(a) and (b) compares the distribution in

the MI element simulated using the coupled and de-
coupled models. Assuming only radial variation (no
circular variation), the transverse component can be
presented within the cross-section of the wire to illus-
trate, in a more physical sense, the distributions of the
flux densities within the MI element, where the vector
lengths are used to indicate the amplitudes.

2) The relative component contributions to the total ef-
fective field in (3) are shown in Fig. 7.

B. Observations and Discussions

Some observations can be made in the comparisons.
• As shown in Fig. 3, the decoupled linear model agrees well

with experimental data in predicting for relatively
large , but fails to predict the MI sensor response to

Fig. 3. MI voltages versus external field (f = 1 MHz).

Fig. 4. MI voltages versus frequency (H = 800 A/m).

Fig. 5. Effects of H on the radial variations of jHj and jBj.

in the weak field region where the harmonic component
(and thus the transverse field established by the current) is
not smaller than the steady dc external field. This is consis-
tent with assumption 1 for the linearized LLG. Similar dis-
crepancies can be observed in the very high frequency re-
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Fig. 6. Transverse magnetic flux density,B . (a) Coupled nonlinear model, (b)
Decoupled linear model.

gion as shown in Fig. 4. Unlike the decoupled linear model
that is invalid in the weak field region, the coupled non-
linear model agrees very well qualitatively with the exper-
imental data. The discrepancy near and in the very weak
field regime is likely due to domain wall effects that have
been neglected in this study.

• Since the decoupled model assumes and
, the scalar permeability does not depend on space

implying that and are parallel in space. Fig. 5
shows that this assumption deteriorates as decreases.

• The analytical models offer an intuitive means to visualize
the effect of micromagnetics on the transverse magnetic
flux density in the weak field regime. Fig. 6(a) and (b)
shows two strikingly different field images predicted
by the coupled nonlinear and decoupled linear models, re-
spectively. In Fig. 6, the amplitudes are evidenced from
the lengths of the vectors. The nonlinear coupled model
[Fig. 6(a)] results in a solution showing the bulk of the
transverse induction occurs within the core, which helps
explain an experimental observation in Co-based amor-
phous wires subjected to harmonic fields reported in [26].
Yamasaki et al. [27] observed experimentally in similar

Fig. 7. Relative component contributions toH (H = 0).

wires using Bitter patterns that revealed no switching ac-
tivity on the wire surface (with observed domain patterns)
while induction changes were still observed but the do-
mains participating can only be made visible by polishing
away part of the wire. On the other hand, the decoupled
linear model [Fig. 6(b)] incorrectly predicts a monotoni-
cally increasing induction with maximums near the surface
(for the case of weak ). One would expect that the trans-
verse magnetic field distribution evolves qualitatively from
Fig. 6(a) to (b) over the range A/m.

• Once the coupled nonlinear equations (11)–(13) are solved,
the components that make up the total effective field
can be computed from (4)–(6) for a given external field.
Fig. 7 shows (on a log scale) the magnitudes of each com-
ponent contribution including Zeeman , anisotropy ,
exchange , and demagnetization for observing the
respective order of magnitudes. As shown in Fig. 7, the
magnitude of is nearly two orders smaller than that of

and , in the core of the wire. The dominance of
the total effective field by the , evident in Fig. 7, also
suggests that the nonlinear dependence of on can not
be neglected; in other words, this dynamic component has
a relatively strong contribution and thus, the amplitude of

is relatively large in its influence on the magnetization.
In a decoupled model, the influence of this component is
assumed relatively small.

V. CONCLUSION

We have presented the effects of coupling both the Maxwell
and Landau–Lifshitz–Gilbert equations to model the MI effect
using numerical methods. The choice of a point collocation
method was shown to offer a considerable advantage in compu-
tational efficiency in solving the equations compared to weak
formulations. This approach has enabled an investigation that
offers intuitive insights into these effects by comparing two
analytical (coupled nonlinear and decoupled linear) models
against published experimental results [20]. In contrast to a
linear approximation that leads to much larger errors in the
weak field regime, the coupled nonlinear model agrees very
well qualitatively with the experimental data and leads to
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quantitative improvements, also. The discrepancy near the very
weak field regime is likely due to domain wall effects that
have been neglected in this study. In addition, both models
lead to strikingly different distributions within the wire, which
provides different qualitative understandings. The role of the
skin effect in the weak regime, particularly in a 30 m diameter
wire, is a unique artifact of the decoupled linear approximation,
while the coupled nonlinear model reveals relatively more
intense “activity” within the core, which is somewhat contrary
to the phenomena of skin effect. Such a different qualitative
feature is consistent with previous (experimental) findings [27],
as well. This investigation suggests that the role of coupling is
essential for understanding the behaviors of MI devices in the
measurement of very weak magnetic fields.
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